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A B S T R A C T

Successful memory encoding is supported by medial temporal, retrosplenial, and occipital regions, which show
developmental differences in recruitment from childhood to adulthood. However, little is known about the extent
to which neural specificity in these brain regions, or the distinctiveness with which sensory information is rep-
resented, continues to develop during middle childhood and how it contributes to memory performance. The
present study used multivariate pattern analysis to examine the distinctiveness of different scene representations
in 169 children and 31 adults, and its relation to memory performance. Most children provided data over up to
three measurement occasions between 8 and 15 years (267 total scans), allowing us to examine changes in
memory and neural specificity over time. Memory performance was lower in children than in adults, and
increased in children over time. Different scenes presented during memory encoding could be reliably decoded
from parahippocampal, lateral occipital, and retrosplenial regions in children and adults. Neural specificity in
children was similar to adults, and did not change reliably over time. Among children, higher neural specificity in
scene-processing regions was associated with better memory concurrently. These results suggest that the
distinctiveness with which incoming information is represented is important for memory performance in child-
hood, but other processes operating on these representations support developmental improvements in memory
performance over time.
The capacity to bind together different features of an episode, such as
information about where, when, and what happened, plays a key role for
the development of memory in childhood (e.g., Ghetti and Bunge, 2012;
Lee et al., 2016; Ngo et al., 2018). The hippocampus has long been
recognized for its role in supporting binding different features of an event
into a coherent mnemonic representation (e.g., Eichenbaum, 2017;
Yonelinas, 2013). The hippocampus receives sensory input from occipital
and parietal regions via neighboring cortical regions in the medial tem-
poral lobe (e.g., Inhoff and Ranganath, 2017). The formation of distin-
guishable memories may thus depend on the precision with which
incoming sensory information is represented in these brain regions.
Accumulating evidence suggests that hippocampal and cortical activa-
tions associated with memory success continue to develop and contribute
hology, Max Planck Institute for
Davis, One Shields Avenue, Dav
e (Y. Fandakova), sghetti@ucdav

orm 16 May 2019; Accepted 18

.

to memory development (e.g., Ghetti et al., 2010; G�omez and Edgin,
2016; Ofen et al., 2007; Sastre et al., 2016; Selmeczy et al., 2019).
However, remarkably little is known about the extent to which neural
specificity in the regions carrying sensory information, or the distinc-
tiveness of their neural representations, additionally contributes to
memory in childhood. The present study begins to fill this gap in the
literature by examining how neural specificity of scene representations is
associated with multiple measures of memory performance in child
development.

A posterior brain network including the parahippocampal and ret-
rosplenial cortex, along with the default mode network, supports scene
construction and perception (e.g., Epstein and Kanwisher, 1998; Mullally
and Maguire, 2011; Vann et al., 2009), and is involved in representing
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the relations between contextual features and individual events (e.g.,
Eichenbaum et al., 2007; Ranganath and Ritchey, 2012). Thus, the
specificity with which information associated with different events is
represented in these cortical regions may play a critical role for children's
memory-guided behavior, especially when scenes or other contextual
features are processed.

Behaviorally, pronounced age differences in memory are observed for
scenes and other complex visual stimuli (e.g., Chai et al., 2010; Mandler
and Robinson, 1978), motivating the hypothesis that there may be
developmental differences in the fidelity of memory representations, or
the extent to which sensory and contextual representations carry precise
enough information to capture subtle differences in complex events. The
examination of neural specificity may provide new insights into the de-
gree to which these age differences may reflect differences in the specific
representation of incoming information. Alternatively, failure to find
developmental differences in neural specificity –in the face of overall
positive associations with memory accuracy – would suggest that
developmental improvements in memory ability are not driven by the
distinctiveness of sensory representations.

Initial neuroimaging evidence has not provided a coherent picture
about the role of neural specificity of incoming information for memory
performance in childhood. To date, multivariate approaches have not
been used to understand memory development, and findings from uni-
variate approaches are inconsistent. On the one hand, a few studies
examining encoding-related activity for subsequently remembered rela-
tive to subsequently forgotten information have reported age differences
in several cortical regions supporting sensory representations, including
the parahippocampal gyrus (Ghetti et al., 2010), the fusiform gyrus
(Güler and Thomas, 2013) or occipital areas (Maril et al., 2011). These
results indirectly suggest that the representation of mnemonic informa-
tion at the time of encoding may potentially vary with age in develop-
ment. On the other hand, several studies have failed to find age
differences in cortical regions supporting sensory representations during
memory encoding (e.g., Menon et al., 2005; Ofen et al., 2007). With
regard to scene processing, one study reported that 7- to 11-year-olds
activated less voxels in parahippocampal cortex than adults during
scene viewing, suggesting that maturation of the parahippocampal place
area may continue beyond this age range (Golarai et al., 2007). Another
study found age-related increases in activation in parahippocampal cor-
tex during encoding of more complex relative to less complex scenes
(Chai et al., 2010), suggesting a link between information-specific pro-
cessing during learning and subsequent scene memory in childhood.

Taken together, results regarding age differences in neural activity
associated with sensory processing during encoding are mixed. It should
be noted, however, that previous studies vary considerably with respect
to the age ranges examined and the specific tasks and stimuli used,
thereby leaving open the question of whether differences in neural
specificity are related to differences in memory ability beyond the
context of a specific task.

Multivariate approaches may be particularly informative for exam-
ining neural specificity in childhood. Whereas univariate analyses pro-
vide information about activity in a voxel or averaged across a group of
voxels, multivariate pattern analysis (MVPA, Haynes and Rees, 2006) can
capture the patterns or configuration of activity across voxels (Chadwick
et al., 2012; Coutanche and Thompson-Schill, 2013; Rissman and Wag-
ner, 2012). It is therefore more sensitive to fine-grained activation pat-
terns reflecting individual percepts or memory traces. Here, it can be
expected that more distinct neural representations of incoming scene
information will be associated with less overlapping patterns of neural
activity (Li and Sikstr€om, 2002). Given that greater overlap among rep-
resentations should result in lower classification accuracy in MVPA,
classification accuracy can be used as a measure of neural specificity (cf.
Rissman and Wagner, 2012). In aging, neural specificity declines, such
that distributed activity patterns evoked by different visual categories
(e.g., faces, scenes, objects) are more similar in older than in younger
adults (e.g., Carp et al., 2011). Furthermore, lower category-level neural
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specificity has been associated with lower fluid reasoning and processing
speed among older adults (Park et al., 2010), indicating that the
distinctiveness of sensory information contributes to higher cognitive
functions. The extent to which individual differences in neural specificity
are associated with children's memory, and cognitive abilities more
broadly, is currently unknown.

Critically, recent studies have gone beyond classification of different
categories (e.g., faces vs. scenes) to demonstrate that activity patterns can
facilitate the classification of different exemplars of the same category
(e.g., scene A vs. scene B), thereby allowing to capture the fidelity of
memory representations at the item level (e.g., Favila et al., 2016; Xue,
2018). We adopted this approach to examine how the extent of differ-
entiation among similar events (i.e., within the same general semantic
category) is associated with memory performance during childhood.
Three questions motivated the present research: (1) Are distributed ac-
tivity patterns evoked by different scenes during memory encoding more
similar in children (7–12 years) than in adults? (2) Is neural specificity
related to individual differences in memory ability beyond a particular
task? (3) Does neural specificity contribute to improved memory per-
formance over time?

We investigated these questions in 169 children (7–12 years) and 31
adults (18–25 years) during encoding of scene-object pairings in the
scanner. Children viewed one of three distinct scenes briefly before in-
dividual unique objects were superimposed on the scene. Children were
instructed to remember the scene-object pair for a subsequent memory
test. We trained and tested a MVPA classifier to distinguish patterns of
multivoxel activity associated with each of the three scenes using a leave-
one-run-out cross-validation. Age differences in neural specificity were
examined in a priori regions of interest (ROIs) implicated in scene pro-
cessing, including the lateral occipital cortex, parahippocampal cortex,
retrosplenial cortex, and anterior hippocampus.

In line with previous findings in adults (cf. Diana et al., 2008; Rissman
and Wagner, 2012), we predicted that the three scenes would be reliably
decoded from areas associated with scene perception in both children
and adults. However, we further predicted that classification accuracy for
within-category exemplars would be higher for adults than children.
Additionally, we predicted that children with better memory perfor-
mance would exhibit greater neural specificity.

To examine the relation between neural specificity and memory
beyond a specific task, we used structural equation modeling to examine
whether classification accuracy across scene-processing regions is asso-
ciated with a latent factor of episodic memory that captured common
variance in memory performance across three different tasks.

Finally, we sought to test the prediction that neural specificity at one
timepoint would predict the growth of memory for individual children.
To this end, we analyzed longitudinal data from two additional time
points (time point 2 (T2)¼ 137 children, 8–14 years; time point 3
(T3)¼ 104 children, 9–15 years).

1. Methods

1.1. Participants

A total of 169 children were included in the present study at T1
(Mage¼ 9.43 years, SDage¼ 1.10; Nfemales¼ 86). Of those, 99 children
provided neuroimaging data for MVPA analysis (Mage¼ 9.77,
SDage¼ 1.03, Nfemales¼ 56). A total of 93 children provided both com-
plete behavioral data and complete neuroimaging data. The remaining
participants either contributed only behavioral data (N¼ 45), were
excluded from neuroimaging analyses due to excessive motion (N¼ 25),
or provided complete neuroimaging, but only partial behavioral data
(N¼ 6). Additionally, 31 adults (Mage¼ 19.18 years, SDage¼ 1.34, Nfe-

males¼ 17) were included at T1 for age difference analyses. A total of 137
children provided data at T2, which took place 0.7–3 years after the
initial assessment (Mage¼ 10.83, SDage¼ 1.22, Nfemales¼ 65). Of those,
93 children provided neuroimaging data at T2 (Mage¼ 10.83,
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SDage¼ 1.08, Nfemales¼ 49). A total of 86 children provided both com-
plete behavioral and neuroimaging data, while the remaining partici-
pants elected to contribute only behavioral data (N¼ 28), did not
complete all three behavioral tasks (N¼ 7), or were excluded for exces-
sive motion (N¼ 16). Finally, 104 children provided data at T3, which
took place 0.7–2 years later (Mage¼ 11.96 years, SDage¼ 1.26, Nfe-

males¼ 49). Of those, 74 children provided neuroimaging data at T3
(Mage¼ 12.00 years, SDage¼ 1.22, Nfemales¼ 30), while the remaining
participants elected to contribute only behavioral data (N¼ 25) or were
excluded for excessive motion (N¼ 5). A total of N¼ 65 children pro-
vided complete behavioral and neuroimaging data, whereas N¼ 11
children provided full neuroimaging, but only partial behavioral data.
The UC Davis Institutional Review Board approved the study. Informed
consent was obtained from all participants and their parents.

1.2. Memory tasks

Memory ability was assessed across a set of three tasks, including a
scene-object task (fMRI), the Wide Range Assessment of Memory and
Learning (WRAML) picture subtest (behavioral), and a selective scene
encoding task (behavioral). Successful performance in all these tasks
required remembering scene information, but the tasks differed in the
specific scenes used and the aspects of scene information that partici-
pants needed to focus on.

Scene-object task. Participants performed three interleaved encoding
and retrieval runs of a scene-object memory task. Each encoding run
included 48 picture drawings of an object or an animal (cf. Cycowicz
et al., 1997), presented on one of three possible background scenes: a
farm, a park, or a city. Each trial began with presentation of one of the
three scenes. After 1000ms, an object or an animal was superimposed on
the scene for 500ms. Following, a visual prompt (“Does it belong?“)
appeared above the scene-object pair, cueing participants to indicate
whether they thought the drawing belonged to the corresponding scene.
Participants were given up to 2000ms for this decision. Trials were
intermixed with a jittered fixation period (500–8000ms).

Each retrieval run included the 48 drawings from the preceding
encoding run, along with 16 novel drawings that had not been seen
before. Participants were instructed to decide whether a drawing was
previously studied (i.e., seen in the preceding encoding run) or new (i.e.,
never seen before). If participants recognized an object or an animal as
previously studied, they were instructed to indicate the scene with which
it had been studied – or, if they did not remember which scene it had
been paired with, to select the “not sure” button.

Memory performance in this task was used as one of three indicators
of episodic memory capacity. More specifically, performance was
computed as hits (i.e., trials in which a scene was chosen for an accu-
rately recognized studied object) – false alarms (i.e., trials in which a
scene was chosen for an inaccurately recognized novel object) (Snodgrass
and Corwin, 1988). Note that the design of this task allows for the
computation of additional indices of memory performance. However, we
opted for computing recognition accuracy in this way to increase
comparability to the remaining indicator tasks and because the decision
about whether the object has been presented is not made separately and
independently from choosing a scene, thereby allowing to capture how
scenes are used in service of memory. Neuroimaging data from the
encoding phase was used for MVPA analyses. Neuroimaging data from
the retrieval phase were not included in the present analyses (see Sastre
et al., 2016; Selmeczy et al., 2019).

WRAML picture subtest. Participants were shown 4 different scenes (a
zoo, a classroom, a garage, and a living room) one at a time and could
examine the scene for 10 s. Immediately after the 10 s, participants were
presented with an altered version of the corresponding scene and were
asked to identify elements of the scene that have been changed by placing
a mark on each part of the picture that has been changed, moved, or
added. Feedback was provided for the first scene.

Following WRAML's evaluation instructions, the raw number of
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correct responses was used as the main index of memory performance on
this test in the analyses reported below. However, this index is based on
correct identification of changed scene elements at test, without a penalty
for incorrectly marked changes (i.e., indicating that a scene element has
been changed when in fact it was the same). Control analyses were
performed, in which we counted the number of incorrectly marked
changes for each participant and used these to derive a memory score
similar to the other tasks (i.e., correctly marked changes – incorrectly
marked changes). Results were similar with both the raw number of
correct responses and the difference between correct and incorrect
responses.

Selective scene encoding task. During encoding (cf. Fandakova et al.,
2017), participants were presented with 24 blocks of 4 outdoor scenes
each that were either assigned to an active encoding condition (16
blocks) or a passive encoding condition (8 blocks). Active blocks were
designed to examine the modulation of attention; participants were
instructed to attend to scenes presented on a green background, and to
ignore (but still view) scenes presented on a red background. After each
active block, participants were presented with a scene that was either one
of the stimuli they had been asked to attend to (i.e., previously presented
in green) or a novel scene, and were asked to indicate whether the item
had been presented in the previous block. During passive blocks, par-
ticipants were instructed to passively view scenes presented on a blue
background. Following passive blocks, participants viewed an arrow and
had to indicate the direction of the arrow. Each scene was presented for
3 s, and the order of passive and active blocks was counterbalanced
across participants.

Immediately after encoding, participants were given a self-paced
recognition test involving stimuli from all 24 blocks. They viewed a
scene and indicated whether they had seen it before, regardless of
encoding condition (i.e., old scenes previously presented on a green, red,
or blue background; 48 scenes) or novel (i.e., a new scene; 32 scenes).
None of the test scenes had been used as probes during the encoding
phase; thus, all the test scenes had been viewed only once before. As in
the scene-object task, memory performance was computed as hits (i.e.,
studied scenes correctly recognized as “old”, irrespective of encoding
condition) – false alarms (i.e., novel scenes incorrectly recognized as
“old”).

1.3. fMRI data acquisition

Functional images were collected using a Siemens 3T Trio scanner
with a 32-channel head coil and a gradient EPI sequence (TR¼ 2000ms,
TE¼ 23ms, no interslice gap, FOV¼ 204mm, 37 slices, voxel
size¼ 3� 3� 3mm). A T1-weighted MPRAGE was acquired for co-
registration of the functional images (TR¼ 2500ms, TE¼ 3.24ms,
FOV¼ 224mm, voxel size¼ 0.7� 0.7� 0.7mm).

1.4. Behavioral data analysis

We conducted behavioral analyses in the structural equation
modeling framework (McArdle, 2009). With three indicator measures of
memory performance, we estimated a latent factor of memory ability.
This approach allowed us to examine individual differences in memory
ability without contamination by unique variability (i.e., measurement
error) of the single memory tasks, while at the same time allowing for
more flexibility in dealing with missing data (e.g., Kievit et al., 2017).
The present indicator tasks were well suited for this type of analyses as
demonstrated by their relatively high correlations among children (sce-
ne-object <–> selective encoding: children r¼ 0.40, p< .001, adults
r¼ 0.49, p¼ .005; scene-object <–> WRAML picture: children r¼ 0.25,
p¼ .002, adults r¼�0.14, p¼ .46; selective encoding <–> WRAML
picture: children r¼ 0.19, p¼ .02, adults r¼ 0.07, p¼ .72).

Analyses were conducted using Onyx (von Oertzen et al., 2015). First,
a latent memory factor was modeled separately for children and adults
(see Supplementary Fig. 1). Subsequently, we usedmulti-groupmodels to
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compare the latent memory factor between children and adults. Based on
previous research demonstrating superior memory in adults, we sought
to confirm a higher factor mean in adults than in children. Parameters
were tested by restricting the corresponding paths to zero or to equality
across groups and comparing the model fit of the resulting nested models
to the freely estimatedmodels via the χ2 statistic with degrees of freedom
(DF) equal to the difference in the number of free parameters.

1.5. fMRI data analysis

Data were preprocessed using SPM8 (www.fil.ion.ucl.ac.uk/spm).
Preprocessing steps included slice-time correction, realignment to the
first volume using rigid body motion correction with sinc interpolation,
co-registration to the MPRAGE, and smoothing with a 6-mm FWHM
isotropic Gaussian kernel. These preprocessing steps have been shown to
minimally affect classification accuracy, while at the same time allowing
for meaningful comparisons across subjects with variability in brain
anatomy (Kamitani and Sawahata, 2010; de Beeck, 2010). Volumes with
head motion >1mm or signal change >2% were replaced with inter-
polated values using ArtRepair (http://cibsr.stanford.edu/tools/huma
n-brain-project/artrepair-software.html). If more than 25% of the vol-
umes in one scan were replaced, the corresponding scan was excluded
from further analyses. Participants with fewer than two valid functional
scans were not included in analyses.

MVPA analyses were performed in the following steps. First, we
independently defined ROIs for this analysis. To this end, we performed a
Neurosynth search (search term “scenes”, June 2016; Yarkoni et al.,
2011) and identified brain regions involved in scene processing across
the 178 recovered studies (reverse inference, p< .01, FDR-corrected).
From this mask, we isolated clusters including more than 100 voxels
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Cluster). These regions included
the bilateral lateral occipital cortex (Lat Occip), bilateral posterior par-
ahippocampal cortex, extending into the lingual gyrus and the fusiform
gyrus (PHG), bilateral retrosplenial cortex (RSC), and the bilateral
anterior hippocampus (Ant HC). Two additional clusters in the right
inferior occipital cortex and the middle temporal gyrus were not included
in the present analyses, which were restricted to theoretically motivated
ROIs involved in scene processing. To ensure the anatomical specificity of
each ROIs, the Neurosynth activation map was masked with a bilateral
anatomical mask of each of these regions from the AAL atlas, resulting in
a total of four bilateral ROIs used in subsequent analyses. Given that the
posterior hippocampus has been implicated in scene processing (Ran-
ganath and Ritchey, 2012), in additional control analyses we examined
bilateral anatomical ROIs of the hippocampal body and tail based on the
AAL atlas.

Second, we identified the most active voxels for each individual
participant in each ROI. More specifically, we used the general linear
framework to estimate the contrast trial> baseline at encoding in each
individual participant. We modeled encoding-related activity with trial
as a main regressor of interest and six estimated motion parameters as
regressors of no interest. The resulting individual whole-brain maps were
masked with each ROI to extract the 50 or 100 most active voxels within
the corresponding ROI within each individual participant. We selected
these two different voxel sizes to ensure that the number of included
voxels did not affect the reported results. All analyses were corrected for
multiple comparisons using an FDR correction.

Third, we used the TDT toolbox (Hebart et al., 2015) to perform
MVPA analysis. MVPA analyses were performed in native space. A
L2-norm regularized support vector machines classifier (Hebart et al.,
2015) was trained to classify the currently presented scene at encoding
using a leave-one-run-out cross-validation. Parameter estimates for sin-
gle trails were derived based on a stick function to model the onset of the
trial. Note that since analyses were performed on the encoding data of the
scene-object paradigm, the data in each run are balanced. We tested
whether classification accuracy in the ROIs differed from chance (33.3%,
given a choice among three scenes) and between age groups.
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Finally, we related classification accuracy to the latent memory factor
to examine the extent to which neural specificity of distributed activation
patterns in scene-processing brain regions was positively associated with
memory ability in children. As we did not have specific hypotheses about
differences among areas involved in scene processing, we formed a
composite score representing average classification accuracy across ROIs
with above-chance accuracy, and related it to the latent memory factor.

Longitudinal analyses including T2 and T3 were performed following
the same procedures as at the initial assessment, with the 50 and 100
most active voxels being determined separately for each time point. Thus,
we used the same identical Neurosynth-based ROIs at each time point,
but we performed the trial> baseline contrast separately at each time
point, and selected the most active voxels within the corresponding ROI
separately at each time point. This approach ensures that conclusions are
based on the most active group of voxels within an individual at any
given point in time within established ROIs.

To assess relations of change over time between classification accu-
racy and memory ability, we fit continuous time structural equation
models using the ctsem software (Driver et al., 2017). Here again we used
composite scores for the neural specificity factor. This factor was
conceptualized in terms of classification accuracy across all
scene-processing regions with above-chance classification accuracy, and
thus with only a single measurement error term. The models were
structured as is typical for latent change and continuous time models,
with initial intercepts and slopes for each factor, while at the same time
accounting for individual differences in age and time intervals between
measurement occasions. Because of the limited number of time points
and the research focus on relations between overall change, the model we
focused on did not incorporate shorter-term fluctuations from time point
to time point. We did, however, repeat the analysis using an expanded
model including stochastic change terms and cross-effects to check the
consistency of inferences between the simpler and expanded model.
While point estimates differed somewhat, results were similar across
both models. Thus, we report the simpler model for both ease of un-
derstanding, and because of its lower AIC value (Akaike, 1973), indi-
cating it is more likely to be an appropriate model. We performed control
analyses including mean age (standardized) as a time-invariant predictor
in the model. Although reported below, the results of these analyses
should be treated as exploratory.

2. Results

Developmental differences in memory ability. A model of memory per-
formance in the scene-object task, selective encoding task, and the
WRAML picture subtest in children demonstrated a significant positive
correlation between age and memory ability, r¼ 0.53, Δχ2¼ 30.57,
ΔDF¼ 1, p< .001 (Fig. 1). A multi-group model including children and
adults indicated that memory ability was significantly lower in children
(Mchildren¼ 0.67) than in adults (Madults¼ 0.85), Δχ2¼ 28.97, ΔDF¼ 1,
p< .001. In line with these cross-sectional age differences, continuous
time structural equation models revealed that memory ability increased
significantly over time, M¼ 0.27, SD¼ 0.03, 95% CI: 0.21 to 0.34.
Control analyses including children's age as a time-invariant predictor
revealed that older children showed overall higher memory, b¼ 0.36,
SD¼ 0.07, 95% CI: 0.23 to 0.49, and less pronounced increase inmemory
over time, b¼�0.15, SD¼ 0.03, 95% CI: 0.23 to �0.08. Together, these
results are consistent with protracted memory development and suggest
that memory ability continues to improve in early adolescence.

Classification accuracy in adults and children. Before examining MVPA
classification accuracy in children, we first sought to establish whether
the patterns of neural activity associated with the three different scenes
in the present study can indeed be decoded reliably in adults from the
ROIs involved in scene processing according to the Neurosynth meta-
analysis (Fig. 2A). We observed an above-chance classification accu-
racy in the parahippocampal/fusiform gyrus, retrosplenial cortex, and in
the lateral occipital ROI (Fig. 2B; Table 1). In contrast, classification
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Fig. 1. Estimated memory ability in children based on a latent factor of the
scene-object task, selective encoding task, and the WRAML picture subtest.
Older children demonstrated higher memory than younger children. These
cross-sectional results were corroborated longitudinally such that memory
ability increased significantly over time.

Table 1
Results of tests of classification accuracy against chance in adults and children at
each time point. Reported p-values are corrected for multiple comparisons using
an FDR correction.

Neurosynth ROI 50-voxel mask 100-voxel mask

Parahippocampal
Children
- Time 1 t(99)¼ 3.28, pFDR¼ .001 t(99)¼ 4.01, pFDR< .001
- Time 2 t(92)¼ 4.08, pFDR< .001 (92)¼ 5.75, pFDR< .001
- Time 3 t(73)¼ 5.04, pFDR< .001 t(73)¼ 6.84, pFDR< .001

Adults t(30)¼ 3.31, pFDR¼ .004 t(30)¼ 3.23, pFDR¼ .005
Retrosplenial
Children
- Time 1 t(99)¼ 4.67, pFDR< .001 t(99)¼ 5.38, pFDR< .001
- Time 2 t(92)¼ 4.53, pFDR< .001 t(92)¼ 5.1, pFDR< .001
- Time 3 t(73)¼ 3.04, pFDR¼ .004 t(73)¼ 4.63, pFDR< .001

Adults t(30)¼ 2.86, pFDR¼ .01 t(30)¼ 3.37, pFDR¼ .004
Lateral occipital
Children
- Time 1 t(99)¼ 6.28, pFDR< .001 t(99)¼ 4.01, pFDR< .001
- Time 2 t(92)¼ 7.74, pFDR< .001 t(92)¼ 9.50, pFDR< .001
- Time 3 t(73)¼ 6.29, pFDR< .001 t(73)¼ 7.28, pFDR< .001

Adults t(30)¼ 4.53, pFDR< .001 t(30)¼ 5.46, pFDR< .001
Anterior hippocampus
Children
- Time 1 t(99)¼ 0.95, pFDR¼ .40 t(99)¼ 0.75, pFDR¼ .46
- Time 2 t(92)¼ 1.95, pFDR¼ .06 t(92)¼ 0.94, pFDR¼ .46
- Time 3 t(73)¼ 0.23, pFDR¼ .82 t(73)¼ 1.06, pFDR¼ .34

Adults t(30)¼ 2.49, pFDR¼ .02 t(30)¼ 1.59, pFDR¼ .12
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accuracy in the anterior hippocampus was less consistent, and varied
with the number of voxels included in the classification analysis
(Table 1).

Similarly to adults, the three scenes could be reliably decoded from
the parahippocampal, retrosprenial, and the lateral occipital ROIs in
children (Fig. 2C; Table 1). Classification accuracy did not differ signif-
icantly from chance in the anterior hippocampus (Fig. 2C; Table 1). Thus,
the regions that showed reliable differences in distributed activity
Fig. 2. Classification accuracy in scene-processing regions. A. Scene-processing ROI
accuracy in adults. C. Classification accuracy in children across ROIs and time points.
line). T1¼ Time 1; T2¼ Time 2; T3¼ Time 3.
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patterns evoked by different scenes during memory encoding – para-
hippocampal, retrosplenial and lateral occipital areas – were the same in
children and adults.

At the same time, results in the hippocampus were less consistent
across mask sizes. Consistent with these findings, whole-brain search-
light analyses revealed similar posterior brain regions in both children
and adults, suggesting that the results are unlikely to be driven by the
selection of ROIs (Supplementary Fig. 2).

To directly compare age groups and brain regions, we conducted a
s based on Neurosynth meta-analysis. All ROIs were bilateral. B. Classification
With three scenes chance levels for classification accuracy are at ~33.3% (dotted
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mixed ANOVA on classification accuracy with group (children vs. adults)
and ROI (anterior hippocampus vs. parahippocampal vs. retrosplenial vs.
lateral occipital). We found a main effect of ROI (F50 vox-

els(3,387)¼ 13.96, p< .001, ηp2¼ 0.05; F100 voxels(3,387)¼ 14.68,
p< .001, ηp2¼ 0.10), which was driven by lower classification accuracy in
the anterior hippocampus compared to the remaining ROIs (all
pFDR< .05) along with higher classification accuracy in the occipital ROI
compared to the parahippocampal ROI (all pFDR< .05) and at a trend
level compared to the retrosplenial cortex (pFDR 50 voxels¼ .08, pFDR 100

voxels< .001). There were no differences in classification accuracy be-
tween the parahippocampal and retrosplenial regions (all pFDR> .30).
We observed no main effects of age group (ps> .10) or group� ROI in-
teractions (ps> .45). Control analyses confirmed that these results were
not confounded by age differences in univariate activation. More spe-
cifically, there were no age differences in univariate scene-related acti-
vation (i.e., trial> baseline) at encoding in any of the ROIs (all ps> .15).
Univariate activation was not correlated with classification accuracy in
the ROIs (all rs< 0.17, all ps� .05). When univariate activation was
accounted for in age comparisons of classification accuracy, the results
reported above did not change.

In sum, scene classification accuracy was similar across age groups,
and was highest in the lateral occipital cortex. These results were repli-
cated at T2 and T3 (Fig. 2C), where children again consistently demon-
strated above-chance classification accuracy in the parahippocampal,
retrosplenial and lateral occipital ROIs, but not in the hippocampus
(Table 1).

Previous research has implicated the posterior hippocampus in scene
Fig. 3. Individual differences in classification accuracy in the 50-voxel mask (left) and
differences in classification accuracy across scene-processing regions (i.e., composite s
above-chance scene classification in both groups). Black dots represent average classi
B. Correlation between classification accuracy and estimated memory ability in child
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processing and contextual memory (cf. Ranganath and Ritchey, 2012). In
control analyses, we therefore examined whether the hippocampal body
and tail showed above-chance classification accuracy. We did not find
evidence for consistently reliable decoding from the hippocampal body
or tail across mask sizes in children and adults (see Supplementary Fig. 3
for details).

Scene representation distinctiveness and memory ability. Children
demonstrated substantial heterogeneity in classification accuracy in
scene-processing regions (Fig. 3A). To further examine whether this
variability was associated with individual differences in children's
memory performance, we computed a composite score representing the
average classification accuracy across parahippocampal, retrosplenial,
and lateral occipital ROIs, from which scene information could be
decoded reliably. Next, we related this composite score to the latent
factor of episodic memory capacity.

A model combining memory and classification accuracy in children
demonstrated an acceptable fit to the data (50-voxel mask: χ2¼ 0.32,
DF¼ 2, RMSEA¼ 0.00; 100-voxel mask: χ2¼ 0.14, DF¼ 2,
RMSEA¼ 0.00). There was a significant correlation between scene-
representation specificity and memory ability (Fig. 3B), such that chil-
dren with higher classification accuracy across scene processing regions
showed better memory, (r50 voxels¼ 0.40, Δχ2¼ 9.02, ΔDF¼ 1, p¼ .003;
r100 voxels¼ 0.51, Δχ2¼ 14.84, ΔDF¼ 1, p< .001). Similar results were
obtained when participants' age was included in the model (r50 vox-

els¼ 0.32, Δχ2¼ 6.97, ΔDF¼ 1, p¼ .008; r100 voxels¼ 0.40, Δχ2¼ 18.65,
ΔDF¼ 1, p¼ .001). If, instead of using a composite score across ROIs,
classification accuracy for each ROI was independently correlated with
the 100-voxel mask (right) is related to memory ability at Time 1. A. Individual
core of lateral occipital, parahippocampal, and retrosplenial ROIs which showed
fication accuracy in children and adults. Error bars represent standatd deviation.
ren. With three scenes chance levels for classification accuracy are at ~33.3%.
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memory, the relation was primarily driven by the parahippocampal ROI
(r50 voxels¼ 0.46; r100 voxels¼ 0.42, ps< .005), with lower positive values
in lateral occipital (r50 voxels¼ 0.13, p¼ .17; r100 voxels¼ 0.33, p¼ .01)
and retrosplenial regions (r50 voxels¼ 0.15, p¼ .16; r100 voxels¼ 0.32,
p¼ .02). Thus, children's memory ability tracked representational spec-
ificity, particularly in the parahippocampal cortex.

Continuous time structural equation models revealed that classifica-
tion accuracy across scene-processing regions did not change signifi-
cantly over time in children, M50 voxels¼ 0.022, SD50 voxels¼ 0.06, 95%
CI: 0.096 to 0.14; M100 voxels¼ 0.03, SD100 voxels¼ 0.057, 95% CI: 0.08 to
0.15. Notably, we observed a positive correlation between the memory
ability intercept and the classification accuracy intercept, r50 vox-

els¼ 0.67, 95% CI: 0.21 to 0.94; r100 voxels¼ 0.65, 95% CI: 0.32 to 0.92,
suggesting that children with overall greater neural distinctiveness in the
scene-processing network had overall better memory. At the same time,
we did not find evidence that neural specificity was related to change in
memory over time, all ps> .05. Thus, representational specificity helped
to explain individual differences among participants, but not improved
memory over middle childhood.

Control analyses including children's age revealed that older children
showed higher classification accuracy (b50 voxels¼ 0.22, SD50 vox-

els¼ 0.097, 95% CI: 0.03 to 0.41; b100 voxels¼ 0.20, SD100 voxels¼ 0.10,
95% CI: 0.01 to 0.40), and a tendency for less pronounced change in
classification accuracy over time (b50 voxels¼�0.14, SD50 voxels¼ 0.07,
95% CI: 0.27 to �0.09; b100 voxels¼�0.11, SD100 voxels¼ 0.06, 95% CI:
0.23 to 0.01). Importantly, including age as a time-invariant covariate
did not change the observed positive relation between individual dif-
ferences in classification accuracy and memory, r50 voxels¼ 0.60, 95% CI:
0.04 to 0.93; r100 voxels¼ 0.62, 95% CI: 0.28 to 0.91.

3. Discussion

The present study investigated the neural specificity of scene repre-
sentations in childhood, and how it contributes to memory performance
across a variety of tasks. In both children (7–12 years) and adults,
distributed activity patterns evoked by different complex scenes could be
reliably decoded from cortical regions implicated in scene processing,
including the parahippocampal and fusiform cortex, retrosplenial cortex,
and lateral occipital cortex. Classification accuracy of the scene-specific
neural patterns during memory encoding was above chance and similar
across age groups. Notably, children with higher levels of neural item-
level specificity for scene representations – particularly in para-
hippocampal cortex – demonstrated better memory. At the same time, we
found no evidence that neural specificity was related to longitudinal
memory improvements in the transition from childhood to adolescence.

During memory encoding, we demonstrated that different scenes
could be reliably decoded from several cortical regions in children.
Moreover, we found similar levels of within-category classification ac-
curacy across children and adults, indicating that the neural represen-
tation of complex scenes is relatively developed by middle childhood. To
ensure that the present analysis was not biased by a particular group, we
performed voxel selection within each individual for each ROI; this is
likely to minimize age differences relative to studies in which areas are
defined based on group results. While this result – similar classification
accuracy between middle childhood and adulthood – is consistent with
some studies examining univariate activity (e.g., Menon et al., 2005;
Ofen et al., 2007), it is seemingly at odds with other studies demon-
strating age-related increases in univariate activity in the para-
hippocampal place area during successful scene encoding (e.g., Chai
et al., 2010; Golarai et al., 2007). It should be noted, however, that dif-
ferences in distributed patterns of neural activity do not necessarily
correspond to differences in average activity across a group of voxels
(Rissman and Wagner, 2012). Critically, age-invariant classification ac-
curacy points to the possibility that sensory information necessary to
form episodic memories is successfully represented during this age
period, and that developmental differences observed in univariate
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activity, including longitudinal changes in task-related activity (e.g.,
Fandakova et al., 2018; Selmeczy et al., 2019), may reflect the devel-
opment of memory processes associated with committing incoming in-
formation to memory, not in the fidelity with which item-level sensory
and contextual information is represented at encoding.

Neural representations of incoming information over distributed
cortical networks represent key building blocks of memory. In adults, the
fidelity of neural representations has been linked to the success of
memory formation at the trial level (e.g., Xue et al., 2010; Favila et al.,
2016). Additionally, higher category-level neural specificity has been
associated with better memory performance in the same task (e.g., Kuhl
et al., 2012). At the behavioral level, lower fidelity of item-level repre-
sentations, especially with visually complex stimuli, may result in lower
memory accuracy and greater susceptibility to false memories (e.g., Ye
et al., 2016). Here, we provide evidence that the distinctiveness with
which information about different complex scenes is represented during
encoding in cortical regions associated with scene processing is related to
better memory in childhood. Of note, representational specificity was
correlated with memory ability beyond the specific task in which neural
specificity was assessed, suggesting that this measure may capture a more
general property related to the ability to form distinct representations for
complex scene stimuli.

What might be a possible neural mechanism underlying the relation
between neural specificity and individual differences in memory? Li et al.
(2001) proposed a neurocomputational model linking age-related
cognitive deficits in later adulthood to decreases in dopaminergic mod-
ulation. In this model, simulating decline in dopaminergic modulation
resulted in lower neuronal responsivity and led to increased neural noise
and less distinctive neural activation patterns. Although comparable
evidence in childhood is missing, dopamine levels have been shown to
increase during childhood (e.g., Goldman-Rakic and Brown, 1982) and
adolescence (Hoops and Flores, 2017; Luciana et al., 2012) in humans
and non-human primates. These changes are multifaceted in nature,
including changes in dopamine receptor density and dopamine concen-
tration. In addition, the exact trajectory of dopaminergic change is a
matter of debate with some evidence of linear increase from childhood to
adolescence vs. a concentration peak in adolescence (Wahlstrom et al.,
2010). Consistent with the model proposed by Li et al. (2001), it is
possible that individual variability in neural specificity may, at least to
some extent, reflect individual differences in dopaminergic modulation
(cf. Luciana et al., 2012) that contribute to heterogeneity in memory
performance. The present results are consistent with empirical findings
from aging - age-related reductions in neural specificity have been
related to declines in cognitive performance across a variety of tasks (e.g.,
Park et al., 2010; Zheng et al., 2017). Interestingly, correlations between
different tasks and cognitive domains are higher in children and older
adults than in younger adults, likely because individual differences are
driven primarily by domain-general rather than domain-specific factors
(e.g., Baltes et al., 2006). To the degree to which neural specificity re-
flects neural responsiveness regulated via dopaminergic pathways, rep-
resentation fidelity may represent a domain-general mechanism
contributing to individual differences in cognition.

Based on the well-established contributions of dopamine to cognitive
control (e.g., Cools, 2008), we should also consider that stimulus-specific
processing can be enhanced through the engagement of top-down
cognitive control processes in children and adults (e.g., Wendelken
et al., 2011). Further research is needed to examine how neural speci-
ficity for stimuli of different types and complexity interacts with these
modulatory top-down effects.

We did not find evidence that neural specificity was related to indi-
vidual differences in memory improvement over time. Variability in
memory improvement over time may therefore be driven primarily by
other developmental forces, such as the ability to bind different features
of an event in an integrated memory representation (e.g., Ghetti and
Bunge, 2012), the ability to regulate encoding and retrieval in line with
ongoing task demands dependent on fronto-parietal development (e.g.,
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Fandakova et al., 2018; Simmonds et al., 2017; Yu et al., 2018), the
increasing influences of pubertal changes (e.g., Selmeczy et al., 2019), or
the increasing importance of motivational factors (e.g. Davidow et al.,
2016). Future research is needed to directly test the influence of these
different factors against each other.

The present study corroborates and extends the few previous studies
that examined the relevance of scene processing for subsequent memory
in childhood (Chai et al., 2010; Wendelken et al., 2011). Furthermore, a
recent study (Rosen et al., 2018) reported that encoding-related activity
in the fusiform face area and in the lateral occipital lobe predicted
associative memory for face-object pairs in 6- to 19-year-olds after con-
trolling for age differences. This and other prior studies demonstrated the
relevance of individual differences in the recruitment of sensory pro-
cessing areas for memory formation in childhood (e.g., Natu et al., 2016).
The present study extends these findings by examining multivariate
patterns of activity in childhood and demonstrating that representational
specificity plays an important role for individual differences in memory
ability.

More generally, multivariate approaches might provide further in-
sights on the development of category-specific areas. For example, some
studies suggested that object recognition in the lateral occipital complex
is mature prior to age 8 (e.g., Golarai et al., 2007), whereas others
demonstrated age-related increases in activity up to late adolescence
(e.g., Rosen et al., 2018). Similarly, it is yet unclear whether age-related
increases in the lateral occipital complex, as well as in the fusiform area
for faces, reflect the development of modulatory effects of top-down
attention or further development in neural specificity.

We acknowledge several limitations in the present study. First, we
selected regions of interest that represent key nodes of the scene-
processing network based on a Neurosynth meta-analysis. Although
this procedure ensured that ROIs were defined independently of the task
in which neural specificity was examined, the present design did not
allow to determine ROIs based on localizer tasks specific to individual
participants. Thus, it is possible that our results do not fully capture the
development of neural specificity and its relevance for behavior. Our
approach to select either 50 or 100 most informative voxels specific for
each participant along with the whole-brain searchlight analyses likely
attenuate this problem, but future research should complement these
findings by using localizer tasks. Related to this, the task in which we
examined neural specificity was not a pure scene task, but rather a scene-
object association task. Thus, scene-object binding processes at encoding
may have contributed to lower classification accuracy than would have
been observed in a pure scene task. Even though the relation with
memory performance speaks to the role of improved fidelity of scene
representations (e.g., Xue, 2018), we cannot completely rule out that
scene-object binding may have contributed to individual differences in
classification accuracy. Second, due to the developmental focus of the
study, our adult sample was relatively small and demonstrated uniformly
high memory performance, thereby precluding us from examining the
contributions of neural specificity to memory in adults. Finally, future
studies should examine younger children to test whether, based on the
modulatory role of dopamine, age differences in neural specificity may be
pronounced earlier in development. Here, different measures of memory
performance that vary systematically on relevant dimensions such as
encoding-retrieval delay, incidental vs. intentional encoding, and extend
beyond scenes should be included.

Taken together, our results indicate that neural specificity of the
distributed activity patterns evoked by different scenes is relatively
mature by middle childhood, and is associated with memory ability in
the transition between childhood and adolescence. Future research
should test the extent to which these contributions reflect direct effects
via different levels of distinctiveness in neural representations, possibly
related to dopaminergic modulation, or indirect effects via biasing the
engagement of still developing cognitive control operations. Thus,
examining multivariate patterns of activity may contribute to our
112
understanding of episodic memory development in childhood and
beyond.
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