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A B S T R A C T   

Neural auditory processing and prelinguistic communication build the foundation for later language develop
ment, but how these two are associated is not well known. The current study investigated how neural speech 
processing is associated with the level and development of prelinguistic skills in 102 infants. We recorded event- 
related potentials (ERPs) in 6-months-olds to assess the neural detection of a pseudoword (obligatory responses), 
as well as the neural discrimination of changes in the pseudoword (mismatch responses, MMRs). Prelinguistic 
skills were assessed at 6 and 12 months of age with a parental questionnaire (Infant-Toddler Checklist). The 
association between the ERPs and prelinguistic skills was examined using latent change score models, a method 
specifically constructed for longitudinal analyses and explicitly modeling intra-individual change. The results 
show that a large obligatory P1 at 6 months of age predicted strong improvement in prelinguistic skills between 6 
and 12 months of age. The MMR to a frequency change was associated with the concurrent level of prelinguistic 
skills, but not with the improvement of the skills. Overall, our results highlight the strong association between 
ERPs and prelinguistic skills, possibly offering opportunities for early detection of atypical linguistic and 
communicative development.   

1. Introduction 

Learning oral and written language requires efficient auditory pro
cessing of speech (Gervain, 2015). The first observable step of language 
development is the emergence of prelinguistic skills, that is, a variety of 
mainly nonverbal means of communication such as babbling, pointing, 
and making eye contact (Spencer, 2011; Watt et al., 2006). Studies on 
the association between neural auditory processing and prelinguistic 
skills are scarce. To fill this gap and advance the understanding of early 
communicative development, we investigated these associations longi
tudinally in 6–12-month-old infants. 

Recording auditory event-related potentials (ERPs) derived from the 
electric signal of the brain (electroencephalography [EEG]; Kuhl, 2010; 
Thierry, 2005) is an optimal method for studying young children, as it is 
noninvasive, easy to administer, and requires no active participation 
(Hoehl and Wahl, 2012; Thierry, 2005). Sounds elicit the obligatory P1 

and N2 responses, both robust and well-defined ERPs (Choudhury and 
Benasich, 2011; Kushnerenko et al., 2002a). In infants and young chil
dren, the positively-displaced P1 reflects stimulus detection and regis
tration, whereas the negatively-displaced N2 reflects acoustic 
sound-feature processing (Čeponiene et al., 2008; Čeponiené et al., 
2005). The mismatch negativity (MMN) or mismatch response (MMR), 
in turn, is a pre-attentive response reflecting the discrimination of a 
discrepant (deviant) stimulus in a stream of repeating stimuli (standard 
stimulus; Bartha-Doering et al., 2015; Näätänen et al., 2007). The MMN 
amplitude, obtained by subtracting the standard-stimulus response from 
the deviant-stimulus response, has a negative polarity at frontal elec
trode sites in adults, but in infants positively-displaced MMRs are 
common (Choudhury and Benasich, 2011; Kushnerenko et al., 2002b). 
The focus in the present work will be in ERP amplitudes as a measure of 
neural auditory processing, although also other features of ERPs have 
been investigated (e.g. for associations between ERP latencies and 
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language skills see Cantiani et al., 2016; Riva et al., 2018). Previous 
studies imply that auditory ERPs are concurrently associated with oral 
and written language skills (for reviews see Hämäläinen et al., 2013; 
Kujala and Leminen, 2017). The P1 and the N2 have, for instance, been 
associated with word-naming speed and phonological skills in 6-year-
olds (Kuuluvainen et al., 2016), and with phonological and reading 
skills in school-aged children (Hämäläinen et al., 2018). MMRs have 
been associated with vocabulary in 5-year-olds (Linnavalli et al., 2017), 
and to phonological and reading skills in school-aged children (Bonte 
et al., 2007; Hämäläinen et al., 2018). 

ERP amplitudes measured at a young age also show associations with 
future oral and written language skills, and it has been suggested that 
they could be predictive markers of language (Kujala and Leminen, 
2017; van der Leij et al., 2013). For example, a large N2 in 6-month-olds 
was found to be associated with strong subsequent language skills 
(complex tone stimuli and oral language skills at 3–4 years in Choudhury 
and Benasich, 2011; speech stimuli and reading speed at 14 years in 
Lohvansuu et al., 2018). Furthermore, large P1-like responses in new
borns were associated with good phonological skills in toddlers and 
good reading skills in second-graders (sinusoidal tone stimuli, Leppänen 
et al., 2010), and large P1s at gestational week 40 were associated with 
an advanced neurodevelopmental level at 24 months of age (complex 
tone stimuli, neurodevelopmental level assessed with Bayley Scales of 
Infant Development, Fellman et al., 2004). Associations between MMRs 
or discriminatory N2 (N2 to a deviant stimulus), and subsequent lan
guage skills have also been found (e.g. Cantiani et al., 2016; Leppänen 
et al., 2010; but see Lohvansuu et al., 2018). A large N2 to a frequency 
and/or duration deviant at 6 months was associated with better subse
quent language skills even though the MMR was not (language 
measured at 3–4 years in Choudhury and Benasich, 2011; at 20 months 
in Cantiani et al., 2016; complex tone stimuli in both). Furthermore, the 
MMR to a frequency change in newborns was associated with phono
logical skills in toddlers and reading skills in second-graders (sinusoidal 
tone stimuli, Leppänen et al., 2010), and the MMR to a stress pattern 
change at 5 months of age was associated with vocabulary in toddler
hood (speech stimuli, Weber et al., 2005). Only those two-month-old 
infants who showed an MMR to a consonant change were fluent 
readers as second-graders (speech stimuli, van Zuijen et al., 2013). 
Finally, a large discriminatory response to a consonant change at 2 
months of age was found to be associated with good communication 
skills at 12 months of age and strong language at 24 months of age 
(equiprobable stimulus design with speech stimuli; Maitre et al., 2013). 
Longitudinal associations between language skills and change-related 
neural measures other than the MMR/discriminatory N2 (e.g. neural 
oscillations and vocabulary, Cantiani et al., 2019; source-resolved P3 
and vocabulary, Piazza et al., 2016; complex tone stimuli in both) have 
also been reported. 

Many fundamental principles of human communication, such as 
intentionality and the engagement in joint attention, are learned during 
the prelinguistic phase (Feldman, 2007; Tomasello et al., 2007; Watt 
et al., 2006), and prelinguistic skills are associated with later language 
skills (Cadime et al., 2017; Lohmander et al., 2017; Määttä et al., 2016; 
Murillo et al., 2018; Paavola et al., 2005). Although both efficient neural 
auditory processing and good prelinguistic skills are vital for early 
communicative development (Kuhl, 2010; Snowling and Melby-Lervåg, 
2016), only two studies have, to our knowledge, investigated their as
sociations (Fellman et al., 2004; Maitre et al., 2013). In these studies, 
prelinguistic skills were not measured per se, but rather as a part of an 
index targeting a broad range of skills, and both studies had prematurely 
born children as their participants (Fellman et al., 2004; Maitre et al., 
2013). 

The aim of our study was to examine how infants’ neural speech 
processing is associated with the concurrent level and the subsequent 
development of prelinguistic skills. We assessed neural auditory pro
cessing using ERPs (P1, N2, and MMR), and prelinguistic skills using a 
standardized questionnaire. ERPs were measured at 6 months of age and 

prelinguistic skills at 6 and 12 months of age. Our hypotheses were: 
Large amplitudes of the P1, the N2, and MMRs are associated with a) a 
high level of prelinguistic skills at 6 months of age and b) a strong 
improvement in prelinguistic skills between 6 and 12 months of age. 

To test the hypotheses, we used latent change score models (LCS 
models), a subtype of structural equation models (SEM). In LCS models 
intra-individual change is explicitly modeled, which is optimal for 
investigating longitudinal effects (Kievit et al., 2018; Petscher et al., 
2016). Participants with data missing at some time points can be 
included in LCS models (Allison, 2003; Enders, 2001; Savalei and Ben
tler, 2005), and measurement error can be taken into account when the 
model is estimated (McArdle, 2009; Westfall and Yarkoni, 2016). These 
characteristics give the LCS model an advantage over traditional 
methods, such as correlations or ANOVA, especially when handling 
longitudinal data (Gueorguieva and Krystal, 2004; McArdle, 2009). 

2. Methods 

2.1. Data 

This study includes a subsample of the infants participating in the 
DyslexiaBaby (2014–present) project (described in Thiede et al., 2019; 
Virtala and Partanen, 2018). The families were recruited with adver
tisements in Finnish maternity clinics, project webpages, and Facebook, 
through local learning disorder associations as well as through media, 
and event appearances. For the current study, we collected EEG and 
questionnaire data at 6 months of age, and questionnaire data at 12 
months of age (Table 1). Parents gave written informed consent when 
the infant was enrolled in the study at birth. The study was conducted in 
accordance with the declaration of Helsinki and the Ethics Committee 
for Gynaecology and Obstetrics, Pediatrics, and Psychiatry (Hospital 
District of Helsinki and Uusimaa) approved the study protocol. 

2.2. Participants 

The original sample consisted of 211 healthy full-term infants who 
had passed a hearing screening done routinely at Finnish hospitals 
(detailed description of inclusion criteria in Thiede et al., 2019). Infants 
were excluded from the analysis due to the following reasons: failure to 
meet inclusion criteria (13 infants), families withdrawing from the study 
(2), failure to schedule the EEG recording at 6-month follow-up (56), 
restlessness during the EEG recording (8), EEG data quality issues (27; 
see section 2.6.1), or missing ITC questionnaires at both the 6- and the 
12-month time point (3; see section 2.5). The final sample consisted of 
102 infants (38 girls). The DyslexiaBaby sample was selected to be 
overrepresentative of infants with a heightened risk of developing lan
guage difficulties due to parental dyslexia, and 82 of the infants of the 
current study were infants with at least one parent with dyslexia. Of 
these 82 infants, 52 participated in a music listening intervention be
tween 0 and 6 months of age (preliminarily described in Virtala and 
Partanen, 2018). The sample also included 20 infants with no familial 
risk of language difficulties. In the present study, we utilized the 

Table 1 
The age of the infants for EEG and questionnaire data.  

Variable N (girls) Mean SD Min Max 

Age, EEG  102 (38)  6.11  0.30  5.45  6.57 
Age, ITC6  98 (34)  6.24  0.33  5.55  7.00 
Age, ITC12  88 (31)  12.02  0.33  11.40  13.11 

Note. Age is expressed in months in the table, but in all analyses, we used age in 
days. ITC6 = prelinguistic skills measured with the Infant–Toddler Checklist 
(Laakso et al., 2011; Wetherby and Prizant, 2002) at 6 months of age; ITC12 =
Infant–Toddler Checklist at 12 months of age. The numbers of infants across 
variables differ since we did not have questionnaire data from all infants at both 
ages. 
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complete sample and collapsed across all groups while controlling for 
parental dyslexia and intervention group in analyses. 

2.3. Stimuli 

The stimuli were Finnish bisyllabic pseudowords uttered by a female 
native Finnish speaker, first used by Pakarinen et al. (2014; see Thiede 
et al., 2019 for the original description of the present stimuli and 
paradigm). The stimuli were presented in an oddball paradigm with a 
repeating standard stimulus and occasional duration, frequency, and 
vowel identity deviants. The paradigm also contained very 
rarely-presented non-linguistic novel sounds, the data for which not 
being included in the analyses of the current study. 

Deviant stimuli were constructed by editing the second syllable of 
the standard /tata/ with Adobe Audition CS6 (version 5.0; Adobe Sys
tems Inc.) and Praat (version 5.4.01; Boersma and Weenik, 2013). Root 
mean square normalization was used to match the sound intensity levels 
of the standard and the deviants. The duration deviant was constructed 
by lengthening the duration of the second syllable from 71 ms to 158 ms 
by copying and pasting the center of the last /a/. The frequency deviant 
was constructed by lifting the F0-level of the second syllable from 175 
Hz to 225 Hz, and the vowel deviant was constructed by replacing the 
second syllable with a separately recorded syllable /to/ with the same 
F0-level and duration as the original syllable. The stimuli were pre
sented in four blocks each containing 472 stimuli, of which on average 
70.1 % were standard stimuli and 25.3 % deviants (remaining 4.6 % 
novel sounds). Each deviant type was presented with a probability of 
approximately 8.5 %. The duration of each test block was seven minutes 
and the onset time between the stimuli (stimulus-onset asynchrony, 
SOA) was 900 ± 50 ms. The SOA randomly alternated between 850, 860, 
870, …, 940, 950 ms, minimizing expectancy effects related to the 
predictability of the stimulus onset. Every block started with 4 stan
dards, and every deviant and novel stimulus was followed by a standard; 
otherwise, the presentation order was randomized. 

2.4. Data acquisition and procedure 

EEG data were recorded with 18 active electrodes placed on an EEG 
cap (ActiCap; Brain Products GmbH) according to the international 10/ 
20 system. We used the QuickAmp amplifier (version 10.08.14; Brain 
Products GmbH) and the recording software BrainVision Recorder 
(version 1.20.0801; Brain Products GmbH). The data were sampled at a 
rate of 500 Hz and lowpass filtered online with 100 Hz as cutoff fre
quency. During the recordings, the data were referenced to the average 
of all electrodes. EEG recordings were carried out at Jorvi Hospital of 
Helsinki University Hospital (n = 87) and at a laboratory of the Uni
versity of Jyväskylä (n = 15), both in Finland. The same models of 
equipment and recording protocol were used at both recording sites. The 
infants were awake and sitting in their parent’s lap during the mea
surements, which took approximately one and a half hour with prepa
rations included. A research assistant or nurse entertained the infants 
during the measurement by silently interacting with them or showing 
toys. We used the software Presentation 17.2 (Neurobehavioural Sys
tems Ltd., Berkeley, CA, USA) and a Genelec speaker for presenting the 
stimuli. The speaker was placed behind the infant’s head and the stim
ulus intensity at the infant’s head was approximately 65 dB (sound 
pressure level, SPL). The background noise of the room was approxi
mately 40 dB (SPL). 

2.5. Prelinguistic skills 

Prelinguistic skills were assessed with the Finnish version of the 
standardized parental questionnaire Infant–Toddler Checklist (ITC) in 
the Communication and Symbolic Behavior Scales Developmental Pro
file (Laakso et al., 2011; Wetherby and Prizant, 2002) at 6 and 12 
months of age. Questionnaires that were returned when the infant was 

older than 220 days (mean rounded to closest tenth + 30 days) at the 
6-month time point or older than 400 days at the 12-month time point 
were regarded as missing. ITC has three subscales, which have been 
shown to have moderate to good internal consistency (Eadie et al., 
2010). The Social subscale consists of 13 questions (max 26 scores) 
concerning emotion expression, communication attempts, eye gaze, and 
gestures. The Speech subscale consists of five questions (max 14 scores) 
concerning babbling and attempts to form words. The Symbolic subscale 
consists of six questions (max 17 scores) concerning speech compre
hension, play, and symbolic use of objects. In the current study, we used 
the raw scores for each subscale. All subscales showed moderate cor
relation (see Tables 2a and 2b) at both 6 and 12 months of age. The 
correlation coefficients indicated a stronger correlation between the 
Social and Symbolic scales than between the Social and the Speech 
scales, or between the Symbolic and the Speech scales. These differences 
were significant only in the 12-months data (test for equality of two 
correlation coefficients, p < 0.05). 

2.6. Analysis 

2.6.1. EEG preprocessing 
We first visually inspected the data using BESA Research (version 

6.0; BESA GmbH, 2012) and identified electrodes that had continuous 
noise, hereinafter referred to as bad data/electrode. Peripheral elec
trodes (FP1, FP2, F7, F8, Oz1) with bad data were excluded from further 
analyses, whereas central electrodes (F3, Fz, F4, C3, Cz, C4, P3, Pz, P4) 
with bad data were interpolated during the data preprocessing (max two 
electrodes interpolated per block, adjacent electrodes interpolated in 
approximately 10 % of all blocks). The preprocessing was done with 
MATLAB (Release 2016b; MathWorks, 2016) as well as MATLAB tool
boxes EEGLAB (version 14.0.0; Swartz Center for Computational 
Neuroscience [SCCN], Delorme and Makeig, 2004) and ERPLAB 
(Lopez-Calderon and Luck, 2014). The data were first filtered with 
half-amplitude frequencies of 0.5 Hz and 25 Hz using the pop_eegfiltnew 
function in EEGlab (version 14.0.0, SCCN), and re-referenced to the 
average of two mastoid electrodes (RM, LM) and two posterior scalp 
electrodes (P7, P8). After this, the continuous data were segmented into 
− 100–840 ms epochs around stimulus onset and binned according to 
stimulus type. The epochs were baseline-corrected using a baseline from 
− 100 to 0 ms relative to stimulus onset. In order to reduce 
eye-movement related artifacts, epochs with an absolute amplitude 
exceeding ±120 μV in electrodes close to the eyes (Fp1, Fp2) were 

Table 2a 
Correlation between ITC subscales at 6 months of age.   

Soc6 Speech6 Symb6 

Soc6  1.00   
Speech6  .37  1.00  
Symb6  .41  .25  1.00 

Note. Soc = Social subscale, Speech = Speech subscale, Symb = Symbolic sub
scale, 6 = assessed at 6 months of age. N = 98. 

Table 2b 
Correlation between ITC subscales at 12 months of age.   

Soc12 Speech12 Symb12 

Soc12  1.00   
Speech12  .37  1.00  
Symb12  .58  .26  1.00 

Note. Soc = Social subscale, Speech = Speech subscale, Symb = Symbolic sub
scale 12 = assessed at 12 months of age. N = 88. 

1 Oz was excluded for all infants as it was not an electrode of interest and was 
bad in the majority of recordings. 
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rejected. Thereafter, epochs with amplitudes exceeding ±3 SD from the 
mean for a single electrode or across electrodes were rejected using the 
pop_jointprob function in EEGlab (version 14.0.0, SCCN) and epochs with 
large linear drifts (maximum absolute slope 180 μV; minimum R2 = 0.3) 
were rejected using the pop_rejtrend function in EEGLAB (version 14.0.0, 
SCCN). 

Data of infants with less than 40 accepted epochs for more than one 
stimulus type were excluded from further analysis (see section 2.2). The 
mean number of accepted epochs per infant was 320 epochs for the 
standard stimulus and 68 epochs for each deviant stimulus. The data 
from the two recording sites (Helsinki and Jyväskylä) were of compa
rable quality as measured by the number of accepted trials: the number 
of accepted epochs did not statistically differ between data recorded in 
Helsinki vs. Jyväskylä (t test p > 0.15 for all stimulus types except for 
standards, for which there was a trend of more accepted epochs in the 
Jyväskylä data (p = 0.076). As our main analyses were within-subject 
comparisons we did not deem this trend of a difference to be relevant. 

2.6.2. Extracting ERPs 
ERP amplitudes for individual infants were extracted using the 

toolboxes EEGlab (version 14.0.0; Delorme and Makeig, 2004) and 
CBRUPlugin (version 2.0b; Makkonen, 2018) in MATLAB (Release 
2018b; The MathWorks, Inc., Natick, Massachusetts, USA). We first 
averaged the data across all infants and three electrodes of interest (F3, 
Fz, and F4) for plotting. Obligatory responses (P1 and N2) were calcu
lated from the standard stimulus waveform and MMRs for each deviant 
type were calculated from deviant-minus-standard waveforms. For the 
analyses of MMRs we re-applied the baseline correction to − 100–0 ms 
prior to change onset instead of stimulus onset, resulting in a baseline 
correction window of 125–225 ms for the duration deviant (MMRdur) 
and 80–180 ms for frequency (MMRfreq) and vowel identity (MMRvow) 
deviants. Based on visual inspection and peak latencies calculated from 
the resulting waveforms, we extracted mean amplitudes for five time 
windows, reported in milliseconds after stimulus onset for standards and 
milliseconds after deviance onset for deviants: 143–193 ms for P1, 

Fig. 1. A schematic of the main LCS model. Latent variables are plotted as ovals and measured variables as rectangles. Single-headed arrows represent loadings and 
regressions, while double-headed arrows represent variances and covariances. Dashed lines represent paths with unstandardized estimates fixed to one. ITC = latent 
for the Infant–Toddler Checklist [prelinguistic skills], Δ ITC = change in ITC, ERP = latent for the event-related potential (ERP) response being tested, Soc = Social 
subscale, Speech = Speech subscale, Symb = Symbolic subscale, F3/Fz/F4 = amplitude of the ERP response on electrodes F3/Fz/F4. Numbers after ITC, Soc, Speech, 
and Symb represent the age (in months) at which they were assessed. Based on the results of the preliminary correlation analyses, we tested two main models: one 
model for the P1 response and one for the MMR response to a frequency deviant. 
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360–410 ms for N2, 221–321 ms for MMRdur, 185–285 ms for MMRfreq, 
and 165–265 ms for MMRvow. The data were separately extracted for all 
infants and all electrodes of interest (F3, Fz, and F4). 

2.6.3. Statistical analysis 
Associations between variables of interest were preliminarily 

explored using univariate Pearson correlations in Stata (Release 15; 
StataCorp LLC, 2017). The variables of interest were as follows: P1, N2, 
MMRdur, MMRfreq, MMRvow, ITC at 6 months of age (ITC6), ITC at 12 
months of age (ITC12). For the exploratory analysis we used mean totals 
for ERPs (mean of electrodes F3, F4, and Fz) and ITC (mean of Social, 
Speech, and Symbolic subscales). As P1 and MMRfreq amplitudes were 
associated with ITC scores (p < 0.05, not corrected for multiple com
parisons), we further examined them in the main LCS analyses. There 
were 72 infants with complete ITC data at both 6 and 12 months of age. 
The rest (30 infants) had a missing score in one or more subscales at the 
6- or 12-months stage (one scale missing: n = 16, two scales missing: n =
5, three scales missing: n = 9). To ensure that the data were missing at 
random (MAR) as required for the estimation method used, we tested for 
covariate-dependent missingness (CDM), which is a special case of MAR 
(Li, 2013; Little, 1988). We added gender as a covariate since more girls 
than boys (Pearson χ2 (df) = 6.85, p = 0.01) had missing ITC values. 
CDM was confirmed (Little’s CDM test; χ2(df) = 141 (168), p = 0.94) 
with gender as a covariate. It has been recommended that the covariates 
included in the CDM test should also be added to the model being 
estimated (Li, 2013; Little, 1995). We therefore added gender as a co
variate to all models. 

In the LCS analyses, we first modeled the latent structure of ITC at 6 
and 12 months of age (Model1itc6 and Model 1itc12) to check that the 
data fitted the latent structure we were suggesting. We formed latent 
variables for both time points, ITC6 and ITC12, with the three ITC 
subscale scores (Social, Speech, and Symbolic subscale) as observed 
variables (Soc, Speech, and Symb, respectively). The scaling indicator 
(Soc) was fixed to one. Then we modeled the change in ITC between 6 
and 12 months of age to check that the change was significant 

(Model1behav). To create the latent change score, we first regressed 
ITC12 perfectly on ITC6, that is, fixed the regression weight between 
ITC6 and ITC12 to one. Then we defined the latent change score factor 
(ΔITC) as perfectly measured by ITC12, again by regressing ITC12 on 
ΔITC with a regression weight of one. The intercept and the variance of 
ITC12 were fixed to zero (Kievit et al., 2018; Petscher et al., 2016). Using 
this procedure, the latent change variable ΔITC captured the change 
between ITC at 6 and 12 months of age. We also regressed ΔITC on ITC6 
in order to account for any possible effect of prelinguistic ability at the 
baseline measure at 6 months (ITC6) on the change in ITC over time. We 
examined measurement invariance between the observed variables 
measured at the two time points using the following stepwise approach: 
First, we estimated the latent factor loadings of the observed variables 
freely at both time points. Then we fixed the loadings of first the Speech 
subscale and then the Symbolic subscale to be the same across time 
points. The fit of the model decreased significantly when fixing the 
loadings of either of the subscales (see Supplement 1, Table S1 for model 
fit), indicating that measurement invariance could not be established. 
The loadings of the Speech subscale and the Symbolic subscale on the 
ITC latent were therefore freely estimated in all the reported models 
allowing the relation between the subscales and the latent variables to 
be different at the two time points. 

To ensure that the latent structures of the selected ERP variables (P1 
and MMRfreq) were valid, we constructed Model 1P1 and Model 1freq. In 
these models, a latent variable (P1 or MMRfreq) was formed using the 
response amplitudes at electrodes F3, Fz, and F4 as observed variables 
(P1F3, P1Fz, P1F4, FreqF3, FreqF4, FreqF4). The scaling indicator 
(P1F3/FreqF3) was fixed to one. We then combined the behavioral 
change model (Model 1P1) with each of the ERP models (Model 1P1 or 
Model 1freq) to form two new models (Model 2p1 and Model 2freq), one 
for each selected ERP (see Fig. 1 for a schematic of the models). In Model 
2p1 we examined the association between P1 and ΔITC, and in Model 
2freq we did the same for the association between and MMRfreq and ΔITC. 
Gender was included as a controlling variable in all models mentioned 
above. Error terms and variances were freely estimated for all variables. 

Fig. 2. The event-related potentials (ERPs, average of F3, Fz, F4) to standard stimulus and each deviant stimulus, and subtraction curves (standard-minus-deviant) 
for the deviants. Stimulus-change onset is marked with a dashed vertical line and the windows for ERP extraction with a violet box. For visual clarity, the baseline is 
set to − 100–0 ms relative to stimulus onset for all waveforms even though we used a baseline of − 100–0 ms relative to change onset for the mismatch responses 
(MMRs) in the analyses. 
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To check the robustness of our results, we also constructed models 
controlling for parental dyslexia and intervention status. Intercepts were 
estimated for ITC6, ΔITC, and P1/ MMRfreq, and fixed to zero for 
observed variables. 

The LCS models were fitted using the toolbox lavaan (Rosseel, 2012) 
in R (version 3.5.1; R Core Team, 2018). Multivariate normality was not 
established in the data, as indicated by the Doornik-Hansen test and the 
skewness marker of the Mardia test (p < 0.05), mainly due to non
normality in the ITC speech subscale at 6 and 12 months. To account for 
multivariate nonnormality we used robust standard errors (Huber, 
1967) and scaled test statistics (Satorra and Bentler, 1994; Yuan and 
Bentler, 2000) for the maximum likelihood (ML) estimation of the 
model. We used the full information ML (FIML; Yuan and Bentler, 2000) 
to be able to include infants with ITC data missing for one time point. It 
has been shown that models can reliably be estimated using FIML when 
data measured at various time points are missing for some time point, 
but available for at least one time point (Allison, 2003; Shin, 2016). For 
data measured at only one time point, this is not an option and therefore 
complete data was required for ERP and control variables. Model fit was 
assessed with a combination of fit metrics (as suggested by e.g. Kievit 
et al., 2018; Marsh et al., 2004; Schermelleh-Engel et al., 2003). The fit 
metrics used were as follows: the likelihood of a significant difference 
between the expected and observed covariance matrix with the χ2 test 
(good fit: p ≥ .05), comparative fit index (CFI; good fit ≥ .95), Tuck
er–Lewis index (TLI; good fit ≥ .95), the root mean square error of 
approximation (RMSEA; good fit ≤ .06), and the standardized root mean 
square residual (SRMR; good fit ≤.08). The fit of the model was 
considered good if it was good in all the indices and acceptable if it was 
good in all but one of the five indices. 

3. Results 

3.1. ERPs and preliminary correlations 

The P1–N2 complex in response to the standard stimulus and the 
MMRs to the three deviants are illustrated in Fig. 2. The P1 amplitude 
and the ITC12 score, as well as the MMRfreq amplitude and the ITC6 and 
ITC12 score, were correlated (Table 3). 

3.2. LCS models 

Model 1ITC6 and Model 1ITC12 had good fits (Table 4), demonstrating 
that describing ITC as one latent factor indicated by the ITC subscales 
was appropriate at both time points. The fit of Model 1behav was good 

Table 3 
Pearson correlations between mean values of variables of interest.   

P1 N2 MMRdur MMRfreq MMRvow 

ITC6  .05  − .05  .01  .24*  .03 
ITC12  .22*  − .10  .07  .29*  .16 

Note. ITC6 = mean scores of the three subscales of the Infant-Toddler Checklist 
(ITC, prelinguistic skills) at 6 months of age; ITC12 = mean scores of the three 
subscales of ICT at 12 months of age; P1–MMRvow = mean of the event-related 
potential (ERP) amplitude of electrodes F3, Fz, and F4. The values displayed are 
correlation coefficients. * = uncorrected p < 0.05. 

Table 4 
Model fits for all models.   

χ2 (df) p RMSEA [90 % CI] CFI TLI SRMR 

Model 1ITC6  5.18 (4)  .270  .05 [.00–.16]  .96  .95  .06 
Model 1ITC12  0.28 (4)  .991  .00 [.00–.00]  1.00  1.16  .01 
Model 1behav  7.46 (16)  .963  .00 [.00− .00]  1.00  1.15  .06 
Model 1p1  4.81 (4)  .307  .05 [.00− .16]  1.00  1.00  .05 
Model 1freq  8.56 (4)  .073  .11 [.00− .20]  .98  .97  .05 
Model 2p1  37.24 (36)  .412  .02 [.00− .08]  1.00  1.00  .06 
Model 2freq  34.15 (36)  .557  .00 [.00− .07]  1.00  1.01  .07 

Note. Model 1itc6 = latent structure for the Infant-Toddler Checklist (ITC, pre
linguistic skills) at 6 months of age, Model 1itc12 = latent structure for the ITC at 
12 months of age, Model 1behav = latent structures for the ITC at 6 and 12 months 
of age, and change in ITC; Model 1p1 = latent structure for the P1 response; 
Model 1freq = latent structure for the mismatch response for the frequency 
deviant; Model 2p1 = Model 1behav + Model 1p1; Model 2freq = Model 1behav +

Model 1freq. Gender included as a control variable in all models. RMSEA = root 
mean square error of approximation, CFI = comparative fit index, TLI = Tuck
er–Lewin index, SRMR = standardized root mean square residual. 

Table 5 
Parameter estimates for the latent change score (LCS) Model 2p1.  

Latent variables Unstandardized (SE) Standardized p 

ITC6    
Soc6  1.00  0.79  
Speech6  0.25 (0.02)  0.36  ≤.001 
Symb6  0.38 (0.02)  0.57  ≤.001  

ITC12    
Soc12  1.00  0.83  
Speech12  0.34 (0.01)  0.40  ≤.001 
Symb12  0.49 (0.01)  0.66  ≤.001  

P1    
P1F3  1.00  0.96  
P1Fz  0.99 (0.01)  0.98  ≤.001 
P1F4  1.04 (0.02)  0.93  ≤.001 
ITC6 -> ITC12  1.00  0.85  
Δ ITC -> ITC12  1.00  0.88   

Regressions    
ITC 6 -> Δ ITC  − 0.33 (0.24)  − 0.32  .165 
P1 -> Δ ITC  0.20 (0.10)  0.27  .044 
Gender->ITC6  0.41 (0.75)  0.07  .581 
Gender-> Δ ITC  − 1.14 (0.71)  − 0.19  .107 
Gender -> P1  − 1.41 (0.75)  − 0.17  .059  

Covariances    
ITC6 < -> P1  0.31 (0.87)  0.04  .723  

Intercepts    
ITC6  9.88 (0.66)  4.26  ≤.001 
Δ ITC  10.95 (2.55)  4.56  ≤.001 
P1  9.44 (0.65)  2.90  ≤.001 
Gender  0.80 (0.04)  2.03  ≤.001  

Variances    
ITC6  5.37 (1.36)  1.00  ≤.001 
Δ ITC  4.42 (1.36)  0.77  ≤.001 
P1  10.28 (1.47)  0.97  ≤.001 
Gender  0.16 (0.02)  1.00  ≤.001 
Soc6  3.33 (1.12)  0.38  .003 
Speech6  2.27 (0.31)  0.87  ≤.001 
Symb6  1.58 (0.28)  0.67  ≤.001 
Soc12  3.34 (1.28)  0.31  .009 
Speech12  4.66 (0.63)  0.84  ≤.001 
Symb12  2.31 (0.36)  0.56  ≤.001 
P1F3  0.80 (0.22)  0.07  ≤.001 
P1Fz  0.51 (0.21)  0.05  .017 
P1F4  1.90 (0.42)  0.14  ≤.001 

Note. The statistics of variables fixed to 1 are in italics. The statistics of variables 
fixed to zero (intercepts and variance of ITC12, and intercepts of observed 
variables) are omitted from the table. ITC = latent for Infant–Toddler Checklist 
[prelinguistic skills], Δ ITC = change in ITC, P1 = latent for P1, Soc = Social 
subscale, Speech = Speech subscale, Symb = Symbolic subscale, P1F3/P1Fz/ 
P1F4 = amplitude of the P1 response on electrodes F3/Fz/F4, Gender = gender, 
girl as reference. Numbers after ITC, Soc, Speech, and Symb represent age in 
months. 
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(Table 4) and revealed a significant mean increase of 11.65 ITC scores 
between 6 and 12 months of age. The level of ITC at 6 months of age did 
not predict change in ITC, and gender did not predict the level or change 
of ITC (p > 0.05, Supplement 2, Table S2.1). Model 1p1 had a good fit 
and Model 1freq had an acceptable fit (Table 4) suggesting that 
describing the components at the different electrodes as one latent factor 
was adequate for each of the two components. Gender did not predict 
the level of P1 or MMRfreq in Model 1p1 or Model 1freq (p > 0.05, Sup
plement 2, Table S2.2 and S2.3). 

The fits of the models estimating the association between prelin
guistic skills and ERPs (Model 2p1 and Model 2freq) were good (Table 4), 
and all estimated intercepts and variances significantly differed from 
zero. Model 2p1 revealed that a stronger P1 amplitude at 6 months 
predicted a larger change in ITC score between 6 and 12 months of age 
(Table 5, Fig. 3a). The level of ITC at 6 months of age did not covary with 
the P1 amplitude while there was a nonsignificant trend of a larger P1 in 
girls (Table 5). Controlling for parental dyslexia and intervention status 
did not modify the main results, even though there was an effect of a 
smaller P1 in infants with a parent with dyslexia (Supplement 3, Tables 
S3.1, S3.2, S3.4). Model 2freq showed that the MMRfreq amplitude at 6 
months was positively associated with the concurrent ITC score, but did 
not predict the change in the ITC score (Table 6, Fig. 3b). There was a 
nonsignificant trend of a larger change in ITC in girls compared to boys 
(Table 6). The results were the same when we controlled for parental 
dyslexia and intervention status, despite a nonsignificant trend of a 
smaller change in ITC in infants with a parent with dyslexia (Supplement 
3, Tables S3.1, S3.3, S3.5). 

4. Discussion 

Efficient neural auditory processing and prelinguistic communica
tion are foundations of future language skills, but their associations 
have, however, very scarcely been investigated. The present study 
determined whether the level and development of prelinguistic skills 
can be predicted by neural speech processing in infancy. The study was 
conducted with a large longitudinal sample and well-documented and 
established methods (auditory ERPs, Hoehl and Wahl, 2012; Thierry, 
2005, and the parental questionnaire ITC, Laakso et al., 2011; Wetherby 
and Prizant, 2002), using a statistical approach specifically designed for 
modelling longitudinal effects (LCS, Kievit et al., 2018; Petscher et al., 
2016). The results showed that a large P1 response to a repeating 
pseudoword measured at 6 months of age, predicted a strong 

improvement in prelinguistic skills between 6 and 12 months of age. 
This association was not explained by the level of prelinguistic skills at 6 
months. The MMR elicited by a frequency change in a pseudoword 
(MMRfreq), was positively associated with the concurrent level of pre
linguistic skills at 6 months, but not with the subsequent change in 
prelinguistic skills. The correlation analyses in the present study did not 
demonstrate associations between MMRdur, MMRvow, or N2 and pre
linguistic skills, contrary to our hypothesis and previous results (e.g. 
Cantiani et al., 2016; Choudhury and Benasich, 2011; Lohvansuu et al., 
2018; van Zuijen et al., 2013). As correlations were used mainly as a 
preliminary step, the following discussion will focus on the results of the 
LCS models. 

Our results are in line with previous studies showing that large P1 
responses (Cantiani et al., 2016; Fellman et al., 2004; Leppänen et al., 
2010) and large MMRs or other change-related responses to frequency 
changes (Cantiani et al., 2019, 2016; Choudhury and Benasich, 2011; 
Leppänen et al., 2010) are associated with good language-related skills. 
In infants and young children, the P1 has been proposed to reflect the 
detection of and orienting to a sound (Čeponiene et al., 2008; Čeponiené 
et al., 2005; Ortiz-Mantilla et al., 2012). Following this line of thought, 
we suggest that in the current study a large P1 reflects strong orienting 
towards speech or auditory input, which may drive the association be
tween P1 amplitude and prelinguistic development. Strong orienting 
towards speech and communication input is likely to enhance the 
learning of communication-relevant skills, such as turn-taking, joint 
attention, and word-object pairing (Feldman, 2007; Kuhl, 2010). Our 
results showed that MMRfreq was not associated with the change in 
prelinguistic skills from 6 to 12 months, suggesting that in these data 
MMRfreq did not predict the development of prelinguistic skills. The LCS 
model, however, showed a concurrent association between MMRfreq and 
ITC6, which implies that the MMR reflects some aspects of 
sensory-cognitive functions that are relevant for prelinguistic skills. The 
MMR shifts polarity during the first year of life (Cheng et al., 2015; He 
et al., 2007), and due to this, there probably is extensive individual 
variation in the polarity of the response at 6 months of age. The lack of 
an association between the prelinguistic development and the MMR 
could be a consequence of this unstable maturational stage of the infant 
MMR at 6 months, compared to the more robust P1 response to the 
repeating standard. 

Most of the previous studies focused on oral or written language 
skills, while we studied prelinguistic skills. Prelinguistic and linguistic 
skills are closely related (Cadime et al., 2017; Lohmander et al., 2017; 

Fig. 3. Scatterplots showing the significant associations between the P1 response and the change in the Infant–Toddler Checklist (ITC, prelinguistic skills) (a), as well 
as between the mismatch response for the frequency deviant (MMRfreq) and the level of the ITC at 6 months of age (b). 
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Murillo et al., 2018; Paavola et al., 2005), but it is quite possible that 
different ERPs are associated with the level and development of pre
linguistic as compared to linguistic skills. The investigations that best 
compare to our study in terms of the behavioral outcomes, assessed 
associations between ERPs and neurodevelopmental level in prema
turely born children (Fellman et al., 2004; Maitre et al., 2013). These 
studies did not focus on prelinguistic skills but used broad indices 
including measurements of interaction and emerging language skills. 
The results were in line with those of ours, showing that a large P1 to a 
non-speech stimulus (Fellman et al., 2004) and discriminatory response 
to a change in a speech stimulus (Maitre et al., 2013) were associated 
with communication and language skills in toddlerhood. 

In addition to being one of the first studies examining the association 
between neural auditory processing and prelinguistic skills, our study 

makes a crucial contribution to the field by using LCS models. The LCS 
method explicitly models intra-individual change (Kievit et al., 2018; 
Petscher et al., 2016), whereas many commonly used methods such as 
Pearson correlations or ANOVA do not capture this time effect properly 
(Kievit et al., 2018; McArdle, 2009). Additionally, LCS models with 
latent variables become more conservative with an increasing rate of 
measurement error in data, which mitigates the risk of an inflated rate of 
type I errors caused by measurement error and therefore increases the 
reliability of the results (McArdle, 2009; Westfall and Yarkoni, 2016). In 
order to find the most robust associations between neural markers and 
subsequent language development, future studies should consider uti
lizing methods designed for analyzing longitudinal data instead of, or in 
addition to, the correlation analyses typically reported (Gueorguieva 
and Krystal, 2004; McArdle, 2009). 

When interpreting our findings, some properties of the constructed 
models should be considered. Previous studies indicate that ITC scores 
for the Social, Speech and Symbolic subscale reflect both common 
(across subscales) and subscale-specific variation (Eadie et al., 2010; 
Määttä et al., 2016). In the current study, we used the three subscales to 
construct the latent variables ITC6 and ITC12, which captured the 
variance shared by the three subscales. Using latent variables allowed us 
to benefit from the advantages LCS models offer in dealing with mea
surement error (section 1, p. 4; section 4, p. 16). In line with the data on 
correlation between subscales (Tables 2a and 2b in section 2.5), the ITC 
latent loaded higher on the Symbolic than on the Speech subscale. This 
probably reflects the fact that different aspects of prelinguistic skills 
develop at different paces (Määttä et al., 2016; Sansavini et al., 2010). 
Nevertheless, all subscales were closely related to each other (Tables 2a 
and 2b). Accordingly, a one-factor solution shows a good fit to the ITC 
data at both 6 and 12 months of age, as well as in Model 1behav where 
both time points and the change between the timepoints are included 
(Table 4 in section 3.2). We checked for measurement invariance of the 
ITC by fixing loadings of indicators (subscales) on the latent factor so 
that each indicator would have the same loading at both time points. 
Measurement invariance could not be established (see section 2.6.3 and 
Supplement 1), which suggests that the ITC questionnaire assessed 
slightly different constructs in 6- as compared to 12-month-olds. As the 
relative importance of different prelinguistic skills is likely to change 
with age (Määttä et al., 2016; Sansavini et al., 2010), the lack of mea
surement invariance was not surprising. To limit the number of tested 
models, we constructed LCS models only for the ERP components that 
showed significant associations (p < 0.05) in the preliminary Pearson 
correlations. Since Pearson correlations were done primarily for selec
tion purposes, we refrain from further discussion concerning the com
ponents not included in the LCS models (N2, MMRdur, and MMRvow). 
One should also be cautious when comparing the results of the ERP 
components included in the LCS models (P1 and MMRfreq), as a proper 
comparison would require the components to be in the same model. In 
the current study, we constructed separate models for the components 
because we wanted to minimize the number of parameters in each model 
in order to ensure model stability. 

A gender variable was included in all models to adjust for the fact 
that more girls than boys had missing values for ITC (see section 2.6.3). 
The observed trends of a larger P1 and a larger change in ITC in girls 
than in boys should be interpreted with caution, as these effects were 
absent in the models including only each of the relevant components 
(Supplement 2). To the final models we additionally added parental 
dyslexia and intervention status as control variables. Adding the control 
variables did not modify the main results (see Supplement 3 for details) 
indicating that within this framework parental dyslexia or intervention 
were not meaningfully associated with the relationship of the P1/ 
MMRfreq and prelinguistic skills. Separate studies are needed to further 
investigate the relations between these background variables and neural 
auditory processing as well as language-related skills. In future studies, 
with even larger sample sizes, it would also be interesting to subgroup 
the data according to, for instance, the degree of parental dyslexia or the 

Table 6 
Parameter estimates for the latent change score (LCS) Model 2freq.  

Latent variables Unstandardized (SE) Standardized p 

ITC6    
Soc6  1.00  0.80  
Speech6  0.25 (0.02)  0.37  ≤.001 
Symb6  0.38 (0.02)  0.57  ≤.001  

ITC12    
Soc12  1.00  0.84  
Speech12  0.34 (0.01)  0.39  ≤.001 
Symb12  0.49 (0.01)  0.66  ≤.001  

MMRfreq    

FreqF3  1.00  0.88  
FreqFz  0.93 (0.05)  0.92  ≤.001 
FreqF4  0.96 (0.05)  0.87  ≤.001 
ITC6 -> ITC12  1.00  0.86  
Δ ITC -> ITC12  1.00  0.88   

Regressions    
ITC 6 -> Δ ITC  − 0.41 (0.25)  − 0.41  .099 
MMRfreq -> Δ ITC  0.14 (0.10)  0.26  .130 
Gender->ITC6  0.41 (0.74)  0.07  .585 
Gender-> Δ ITC  − 1.35 (0.70)  − 0.22  .055 
Gender -> MMRfreq  0.76 (1.08)  0.07  .479  

Covariances    
ITC6 < -> MMRfreq  3.23 (1.44)  0.32  .025  

Intercepts    
ITC6  9.89 (0.66)  4.21  ≤.001 
Δ ITC  12.93 (2.45)  5.36  ≤.001 
MMRfreq  4.34 (0.96)  1.01  ≤.001 
Gender  0.80 (0.04)  2.03  ≤.001  

Variances    
ITC6  5.50 (1.38)  1.00  ≤.001 
Δ ITC  4.57 (1.19)  0.78  ≤.001 
MMRfreq  18.39 (2.58)  1.00  ≤.001 
Gender  0.16 (0.02)  1.00  ≤.001 
Soc6  3.14 (1.10)  0.36  .004 
Speech6  2.25 (0.31)  0.87  ≤.001 
Symb6  1.63 (0.29)  0.67  ≤.001 
Soc12  3.24 (1.22)  0.30  0.008 
Speech12  4.66 (0.63)  0.84  ≤.001 
Symb12  2.33 (0.35)  0.57  ≤.001 
FreqF3  5.42 (1.30)  0.23  ≤.001 
FreqFz  2.86 (1.18)  0.15  .015 
FreqF4  5.69 (1.20)  0.25  ≤.001 

Note. The statistics of variables fixed to 1 are in italics. The statistics of variables 
fixed to zero (intercepts and variance of ITC12, and intercepts of observed 
variables) are omitted from the table. ITC = latent for Infant–Toddler Checklist 
[prelinguistic skills], Δ ITC = change in ITC, MMRfreq = latent for the MMR for 
the frequency deviant, Soc = Social subscale, Speech = Speech subscale, Symb =
Symbolic subscale, FreqF3/FreqFz/FreqF4 = mean amplitude of MMRfreq on 
electrodes F3/Fz/F4, Gender = gender, girl as reference. Numbers after ITC, Soc, 
Speech, and Symb represent age in months. 
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social environment of the child. 
Our results support the idea that infant ERPs could be used to predict 

the subsequent development of language-related skills. The results also 
demonstrate the importance of assessing both concurrent and longitu
dinal relations between neural speech processing and language-related 
skills in order to profoundly understand the neural underpinnings of 
communicative development. Currently, it is still unclear whether ERPs 
could work as predictors of language-related skills at an individual level, 
and to what degree predictive mechanisms are the same for prelinguistic 
and linguistic outcomes. Further longitudinal studies are needed to 
disentangle the relations between neural auditory processing, prelin
guistic, and linguistic skills, and to find the stimuli and ERP components 
most reliably predicting subsequent development. 
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Hämäläinen, J.A., Salminen, H.K., Leppänen, P.H.T., 2013. Basic auditory processing 
deficits in dyslexia: systematic review of the behavioral and event-related potential/ 
field evidence. J. Learn. Disabil. 46, 413–427. https://doi.org/10.1177/ 
0022219411436213. 
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